Simulating the ENIAC
as a Java Applet

Diploma Thesis

by Till Zoppke

at Free University of Berlin
Department of Mathematics and Computer Science
Takustr. 9, D-14195 Berlin, Germany

Advisors:
Prof. Dr. Raul Rojas
Prof. Dr. Peter Lohr

June 2004

Abstract

The aim of this paper is to introduce the ENIAC simulation. The ENIAC
simulation is a Java applet developed in the context of the author’s diploma
thesis. It revives the historic ENIAC, the world’s first electronic digital com-
puter and ancestor of all contemporary modern computers. The ENIAC
simulation can be used to introduce the learner to the functionality of the
ENIAC, but also as advanced developing environment for designing and test-
ing ENTAC programs. The applet is located at http://kinnla.de/eniac/.

Contents

3.1
3.2
3.3
3.4

3.5

1 The historic ENIAC
1.1 Trajectory calculation
1.2 Speed up through vacuum tubes
1.3 Programming the ENIAC
2 A first tour
2.1 Starting the ENIAC simulation
2.2 The Initiating unit L oo
2.3 The Cyclingunit
24 The Accumulator unit
2.5 Running the simple example
251 Press“gol”o
2.5.2 Triggering operations
2.5.3 Number transmission
254 Carry overo e
2.5.5 One transmission cycle
2.5.6 Operation completed
26 Howtolearnmore?
3 Fibonacci number computation

The basicsetup
Interconnection of Accumulators
The Constant Transmitter
Running the program
3.4.1 The clear correct switch
342 Readingaconstant,
Two main loops
3.5.1 The Fibonacci computation loop
352 Theforloop.

10
10
11
12
14
16
17
17
17
18
18
19
19

CONTENTS

3.6
3.7

4 The
4.1

4.2

4.3

4.4

5 The
5.1

3.5.2.1 converting digits to program pulses.
Program termination o000
Reading theresult

ENIAC simulation Architecture
Namespaces oo e
4.1.1 Singleton classes
4.1.2 Class eniac.util.Status
4.1.3 Class eniac.io.Tags.
414 Class java.lang.Words
4.1.5 The classloader namespace
4.1.6 Parameters
417 Model layer typeso
4.1.7.1 XML input and output
4.1.7.2 Creating graphical objects from model layer
objects L.
4.1.7.3 Identifyingnodes
ENTAC components
42,1 Themodellayer
4.2.2 'The kindergarten
4.2.3 'The graphical layer
424 Thedescriptor
425 Thecontrollayer
XML files 0o
4.3.1 Parsing XML using the org.xml.sax APT
4.3.2 Theproxy concept,
433 XML filetypes
43.3.1 eniacxml L.
4332 skinxml. 0L,
4333 langxml
4334 menuxml
4335 typesxmlo
Actions
4.4.1 EAction and ToggleAction
4.4.2 MenuManager and MenuHandler

software development process

General aspects
5.1.1 Inner and outer software quality
5.1.2 Top-down versus Bottom-up

CONTENTS

5.1.3 Maintaining a Prototype L.
5.1.4 The project manager and the customer
5.2 Developing the ENIAC simulation
5.2.1 A time-line for the ENTAC simulation
522 Thetodolist
523 Thediaryo
5.2.4 The factual time-line for the ENTAC simulation

6 Summary and Outlook

46
47
48
49
50
51
52

53

Introduction

In 1995, the ENIAC’s 50th birthday has been celebrated. For this reason a
team around Jan v. d. Spiegel at University of Pennsylvania reconstructed
the ENIAC on a silicium chip.[3] Extensive research on the ENIAC’s func-
tioning have been done, before it could be designed in VLSI. The original
ENIAC was arranged along the walls of a 10x17 m room and weighted 30
tons. After 50 years the reconstruction took place on a 7.4 x 5.3 square mm
chip. This is an effective demonstration of the power of Moore’s law. In
2005, the ENIAC’s 60th birthday will be celebrated. For this reason a team
around Jan v. d. Spiegel and Rail Rojas is rebuilding the ENIAC in the
ratio of 1:4 by using historical technology, in particular vacuum tubes.

Together with the hardware reconstruction, it would be nice to have a
software simulation. Programs for the ENTAC could be tested within the
simulation before they are wired at the hardware. On the other hand, the
double tracking can be used to debug the reconstruction and the simulation
vice versa: Wire any program at the simulation and the same program at the
reconstruction, then compare the results. The probability that simulation
and reconstruction both have the same buggy result is supposed to be very
small. So if the results are the same, their computation is probably OK, and
if they are different, at least one of both has a bug. The ENTAC simulation
has its origin in this idea.

After a short introduction to the historical ENIAC in chapter 1, a tutorial
containing two examples of ENIAC programs will follow in chaps. 2 and 3.
Switching to the programmer’s perspective, I will introduce the software
architecture in chap. 4, and report about the development process in chap.
5. Finally in chap. 6 the ENIAC simulation is compared with a prior work.[8]
Also suggestions of new features are given.

Chapter 1

The historic ENIAC

1.1 Trajectory calculation

At the time of World War II intelligent bombs were not yet developed, so
ground based artillery was used to attack the enemy. Depending on the
distance of the target and the type of artillery, the bullet has to be shoot in
a certain angle. This angle also is related to the weather, especially to the
wind. To know the correct angle in the specific situation, the artillery men
used so-called firing tables. But those firing tables had to be computed first.

Those ballistic computations were done at the Moore School of Electrical
Engineering, part of the University of Pennsylvania, too.

Calculating a trajectory could take up to 40 hours using a desk-
top calculator. The same problem took 30 minutes or so on the
Moore School’s differential analyzer. But the School had only
one such machine, and since each firing table involved hundreds
of trajectories it might still take the better part of a month to
complete just one table.[5]

The speed up in developing new artillery designs caused an increased need
of computation power.! Under these circumstances John Mauchly, a mem-
ber of Moore School’s Engineering, Science, and Management War Training
(ESMWT) program, wrote a first five-page memo called The Use of Vac-
wum Tube Devices in Calculating. In this paper he suggested a machine that

'In November 1942 US forces landed in French North Africa, and entered a terrain,
which was entirely different from what they had met before. The existing firing tables
turned out as completely useless. That made the computation power totally to the bot-
tleneck of the war machinery.

CHAPTER 1. THE HISTORIC ENIAC 7

Figure 1.1: View of the ENIAC in its U-shaped room (from [15])

would add 5,000 10-digit numbers per second and would be more than 100
times faster than the fastest computer at that time.?

1.2 Speed up through vacuum tubes

The memo was followed by two proposals, which Mauchly wrote together
with J. Presper Eckert, Jr., an instructor at Moore School. In June, 1942,
a contract was signed and the project became funded by the United States
Army. The machine to be developed was named FElectronic Numerical Inte-
grator And Computer, short ENIAC.?

The ENTAC’s great innovation was the usage of vacuum tubes for number
representation in contrast to mechanical relays, which were commonly used
at that time. The machine consists out of forty independent panels, each
0.6 m wide, 2.7 m high and 0.7 m deep plus three movable function tables.
Those units were arranged in U shape occupying an area of about 10m by
17m (see [3], p-124). The total number of 17,468 vacuum tubes were used.

2The fastest computer in 1942 was a mechanical relay computer operating at Harvard,
Bell Laboratories with 15-50 additions per second.[5]

30n the web you also can read Calculator instead of Computer. I use the name ac-
cording to the report from 1945.[1]

CHAPTER 1. THE HISTORIC ENIAC 8

The first demonstration of the ENTAC’s computing power could be given
two years later:

In May of 1944, the ENIAC team was able to demonstrate ENIAC’s
workability in what has come to be known as the two accumu-
lator test. In this, one accumulator was made to increment its
value from one to five. The number was then transferred into
the second unit one thousand times using the limited control cir-
cuitry housed in each accumulator, all in just over one fifth of
a second, or about the blink of the eye. At the end of the test,
the second accumulator sat idle, displaying the number 5,000 —
hardly the most impressive of mathematical feats. [5]

One problem to deal with was the reliability of the vacuum tubes. For
frequently used circuits the tubes were selected by hands, and special test
procedures were implemented to identify a broken tube within minutes in
case of a failure. This happened about two or three times a week causing a
weekly downtime of only a few hours. (cf. [3], p.126)

1.3 Programming the ENTAC

The ENTAC didn’t have a memory to store programs. So programming the
ENIAC means physically connecting the units by cables and turning switches
to the appropriate settings. This work was done by six women whose jobs
were called computers. They were chosen from a group of over eighty women
that were calculating ballistic trajectories by hand. (cf. [6])

20 of the ENIAC’s 40 units were Accumulators. An Accumulator was
capable to store a 10-digit number, to add and to subtract. Other arith-
metic units were the Multiplier, supported by the Function Table, and the
Divider/Square-rooter. For fast number input, the Constant Transmitter
was used, whereas for controlling the program flow a Master Programmer
was helpful. The IO connection to stored data was done by an IBM card
reader and an IBM card punch controlled by a printer panel. Finally there
were the Cycling unit as pulse machine and the Initiating unit to boot the
whole machine or to start a program.*

In May 1945, yet before the ENIAC was formally completed, the World
War II came to its end. That meant, the initial aim of computing firing tables

Tt doesn’t fit into the context of this paper, to give a detailed description of the
ENIAC’s functionality. If you want to learn more about that, refer to J. v. d. Spiegel [3].

CHAPTER 1. THE HISTORIC ENIAC 9

Figure 1.2: The first professional programmers (from [16])

for the artillery became obsolete. But the upcoming cold war required even
more complex computations. So the first real task assigned to ENIAC during
its test runs in 1945 involved millions of discrete calculations associated with
top-secret studies of thermonuclear chain reactions — the hydrogen bomb. |5]

Chapter 2

A first tour

In this chapter the features of the ENIAC simulation are explained. Even
people with little computing background will find a way to use the ENTAC
simulation and to understand the basics of how the ENTAC works.

2.1 Starting the ENIAC simulation

The ENIAC simulation needs less than 5 seconds to start on a GHz PC plus
the time you need to download the program.

At first you are prompted to accept the certificate of the ENIAC simula-
tion. If you refuse to do so, you won'’t be able to save ENIAC configuration
files to your hard-disk. But anyway, this might not be your plan, even if you
start the ENIAC simulation the first time. So you probably won’t miss that
feature. If you change your mind later, at any time you can restart your
browser and accept the certificate.

b Gal Please wait RN

Loading skin

]

cancel |

When the Java class files are loaded, the applet starts and announces
that it is busy. External resources as images and data files must be loaded.
You stay informed about the progress.

10

CHAPTER 2. A FIRST TOUR 11

b4 Open configuration
Choose web location-

'Simple example |Two Accumulators canfigured with
Fibonacci numbers |2 simple program. The first Accumulator
Small iz set 108 and will send this 5 times.
= he secand Accumulator is set ta 2
] Medium: and receives the additively, what
Large he first Accumulator is sending.
o the computation performed is 5*8+ 2.
| cakles and switches are set,
he Cycling unit is running
in idle mode. You just need to press

4

rLoad from local file-

| ok " cancel |

At next you are prompted to select an ENTAC configuration from a list of
currently 5 alternatives. An ENIAC configuration includes more or less of the
units that originally could be found at the ENIAC. Also some configurations
have a program wired. The features of the configurations for your choice
are printed in the right hand text area when you select a configuration.
When you are using the ENIAC simulation the first time, choose the “Simple
Example” that is already preselected and confirm your selection by pressing
OK.

Now the main window opens. As you probably know it from other soft-
ware, you find a menu bar and a tool bar to control the program. Inside the
main window you can see the units of the ENIAC.

2.2 The Initiating unit

off.on f . y
E P [gat) clear

CHAPTER 2. A FIRST TOUR 12

The first unit is called “Initiating unit”. Above, you see the original front
panel at the left hand, and the simulated one on the right hand. Don’t be
irritated by the fact that a photo of the original ENTAC is displayed at the
simulated one.

The main purpose of the Initiating unit was to perform the boot process
of the ENIAC. When a unit was switched to power, its tubes were in an
inconsistent state and had to be initially cleared. This complex process is
not simulated, so the simulated Initiating unit has less instruments than the
original one.

Like all units of the ENIAC simulation, the Initiating unit has a colored
icon. If you later load a bigger configuration you will use the overview
window to navigate. In this window you find any unit represented by its
icon. The icon cannot be clicked.

The second square is the power switch, the so called “heaters”. Every
unit has such a power switch. In the simple example, all units are initially
switched on.

Next is the “go!” button. Its original name is unknown, but its meaning is
suitable described by “go!”. When this button was pressed, an initial program
pulse is sent to the other units. Or rather: The next time when the pulse
cycle of the ENIAC reaches the CPP! phase it will be sent. One addition
cycle of the original ENTAC was 200 milliseconds, the default setting in the
ENTAC simulation is about 5 seconds.

The last button of the Initiating unit is the clear button. It is used to
send a clearing pulse to the other units.

2.3 The Cycling unit

The task of the Cycling unit is to provide the other units with clock pulses.
It is the heart of the ENIAC.

!Central Programming Pulse

CHAPTER 2. A FIRST TOUR 13

D_].—/ﬂv_.—_
o-

120,
O opumnmezel 0@

off on ste
——,

The original Cycling unit had an oscilloscope (see the circle at the photo),
where you could observe a selected pulse and a few controls for using two
debug modes. In the first debug mode, the pulses for one addition cycle were
sent, in the second one just the pulse for the next 10 milliseconds was sent.

Though you cannot see the pulse in the simulated Cycling unit, it pro-
vides more features than the original one. The rectangle underneath the
oscilloscope of the original Cycling unit is a pulse table. The same table
you can find at the head of the simulated cycling unit, but improved by a
vertical line indicating the current state of the pulse cycle. When you loaded
the simple example, you should see this line moving to the right, then disap-
pearing at the end and restarting from the left. That means, the simulated
ENIAC is already running in idle mode.

Below the animated pulse table, you find a slightly smaller rectangle.
Over there the time-line of the simulation speed is displayed. On a state of
the art GHz computer, you should have a simulation high-speed of about
2000 addition cycles per second. Of course the high-speed also depends on

CHAPTER 2. A FIRST TOUR 14

the complexity of the program executed on the ENTAC simulation. The orig-
inal speed of the ENTAC was 5000 addition cycles per second. So according
to Moore’s law the simulated ENIAC will be as fast as the original one within
about 3 years.

Below the simulation speed screen, the number of performed addition
cycles is counted. On the right you find the iteration switch, a rotary switch
with a range from zero to infinity. There you can select one of three debug
modes or the continuous operation mode. Below the iteration switch is a
button labeled as “step”. If you are in the debug mode, you can step through
the cycle by pushing this button. The step width depends on the iteration
switch setting.

To the left of the step button, you find the frequency slider, with that
you can set the speed of the simulated ENTAC clock. This tool is also not
know at the original ENIAC, because the clock was running at a fixed speed.
Finally there are a power switch and an icon.

2.4 The Accumulator unit

The ENIAC is called an Accumulator based computer. The aim of the
accumulator is to store a ten-digit signed number and to receive or to send
it positively or negatively.

o
\‘ Yay” A\' A A‘A‘ A\' A\' A‘A‘ A
’.Soc‘.Soc‘.Soc’.Soc‘.Soc.' ’.Soc‘.S

I
:11611611611611611611'6

2,.82‘82,. 32,.8
e
OF 08 060 06 G)J@ ﬁ@ 00 08

The Accumulator cannot be explained without a general introduction into
the concept how the distributed units of the ENIAC work together. The
operations of the Accumulator are triggered by program pulses. Program
pulses usually are send through the lower trays.

CHAPTER 2. A FIRST TOUR 15

The screen-shot above shows 5 trays. Every tray contains 11 parallel
wires. Each wire can be accessed by several connectors. In our case, we have
3 connectors per wire (only 2 are included in the screen-shot). A program
connector is represented by a small circle with a dot in its middle. There are
3 series of those circles. The first connector of every series leads to the first
wire, the second connector to the second wire, and so on.

A connector can be plugged by a cable. In the simple example, there are
3 cables between program connectors. So the pulse can go from a unit to a
tray and from the tray to another unit. Both Accumulators have a program
connector plugged to the same program tray, both to the 9th wire.

An accumulator has 4 single program connectors and 8 pairs. The left
one of a pair is an input and the right one is an output. The 4 single con-
nectors are all inputs. If a program pulse reaches an input connector, an
operation will start. The type of operation is given by the corresponding op-
eration switch. In the case of a paired program connector, the corresponding
operation switch is the one two rows above, in case of a single program con-
nector it is even one row higher. The Operation switch lets you select values
from alpha to ¢, 0, A, AS and S.

Now the digit pulses join the game. The Accumulator has 7 digit con-
nectors close to its upper boarder. A digit connector is represented by a
rectangle with 15 dots. The digit connectors from left to right are named «
. &, A, S (please note that these names are displayed as tool-tips). The first
5 are input connectors, the last 2 are outputs.

Depending on the Operation switch setting, a number is received by one
of the inputs, no operation is performed or a digit is sent through one or
both outputs. Receiving a number means adding it to the currently stored
number. Sending a number through the A output means sending it as it is,
sending it through the S output means sending its negated value.

An operation can be repeated several times, if the Repeat switch is set
accordingly. The corresponding Repeat switch to a paired program connector
is the one just above. After executing the operation the last time, a program
pulse is sent through the output Program connector.

CHAPTER 2. A FIRST TOUR 16

On top of the Accumulator you can find the blinkenlights.? During pro-
gram execution their flashing indicates that the Accumulator is performing
a computation. When the program is finished you can see the result. The
original blinkenlights above show the number 3,033,331,112, while the screen-
shot shows 2,584. In the simulation you can use the blinkenlights as well for
number-input — just click them.

There are a few details of the Accumulator that haven’t been explained
yet. But for our simple example they can be ignored.

2.5 Running the simple example

If you just skipped the last sections, because you wanted to know what
happens after pressing the “go!” Button, please calm down. It is nothing
spectacular, just a simple computation. Anyway, if you don’t get it, why
the computation is performed like it is, you can repeat the whole procedure.
And it might be a good idea to set the Iteration switch to the debug mode
and watch the computation step by step. OK, here we go!

2The term blinkenlights is a German-English crossover and origins from a sign in Stan-
ford University, 1959. [14] But in fact the design was introduced by the ENIAC: In
planning their public demonstration in 1946, it occurred to Pres Eckert and the rest of
the ENIAC team to place translucent spheres— ping-pong balls cut in half-over the neon
bulbs that displayed the values of each of ENIAC’s twenty accumulators. Ever since, the
flashing lights of computers, often called electronic or giant "Brains” in the early years,
have been part of the scene involving computers and science fiction. [5]

CHAPTER 2. A FIRST TOUR 17

2.5.1 Press “go!”

As mentioned above, we have to wait until the cycle reaches the CPP
state. When this is the case, a pulse will go into the program tray. Time-line:
less than 170 ms.

2.5.2 Triggering operations

" =y ..O..o..e..o.. HEEE e ..O..o..e..o.
jojojclopgologoloololy Jogolojolo) golojolopologolooloRg 1]

So the operations of the Accumulators are triggered synchronously. The
first one is configured to send its number 5 times through the A output. The
second Accumulator will listen for 5 addition cycles at its - input. By the
way — the first Accumulator initially stores the number 8, the second one
stores number 2. Time-line: 170 ms.

2.5.3 Number transmission

CHAPTER 2. A FIRST TOUR 18

The first accumulator transmits its number by rotating all of its ten
decades. The aim is not the flashing effect, it is conditioned by the electronic
circuits. The second accumulator receives the digit pulses causing its number
to increment. Time-line: 230 ms.

2.5.4 Carry over

After finishing one rotation cycle, the first Accumulator came back to
its initial value 8. But the second one displays 0, though it should display
2+8. The reason for this is the fact, that a carryover cannot be performed
immediately. Just an internal flag is set, waiting for the reset pulse to come.
This pulse finally triggers the carryover. Time-line: 320 ms.

2.5.5 One transmission cycle

After completing one transmission cycle, the carryover is performed as
what we expected. In the next 4 cycles the computation will go on the
analogous way. Time-line: 400 ms.

CHAPTER 2. A FIRST TOUR 19

2.5.6 Operation completed

After the 5th number transmission and the carryover performance, the
computation is finished and the result is shown on the right Accumulator.

i- [o10] ®®I®® D GO GO SR i

At the CPP cycle-time, both Accumulators send a program pulse in order
to confirm that their job is finished. Time-line: 1170.

2.6 How to learn more?

Hopefully you enjoyed our little tour through the ENTAC simulation. If
you want to go on learning about the ENIAC, you should start to play
around with the simple example. To change numbers you simply can click
the blinkenlights of the Accumulators. What will happen, if you change the
output from A to S? What will happen, if you transmit a negative number?
Try to remove all cables and reset all switches, then try to reconstruct the
simple example from your memory. Create your own programs. Can You
find one, that runs in an eternal cycle?

When you feel familiar with those cables and switches, load the advanced
example of computing the Fibonacci numbers.

Chapter 3

Fibonacci number computation

3.1 The basic setup

After loading the Fibonacci number example, we find the ENTAC running in
idle mode like in the previous example. We can know this by the fact, that
in the overview window a vertical line is moving above the Cycling units.
This configuration is bigger than the previous one. It contains 12 units. We
can use the Overview window to scroll around the units by just clicking with
the mouse on it.

&) Overview window =R

To the right we see the four units we already know from the previous
example. Please note, that the trunks containing the wires for pulse trans-
mission, don’t lead across the whole length of the configuration. They are as
width as 4 units. The upper trunks to the left are just as width as 2 units.
So if a pulse should be passed from one trunk to its neighbor, they must be
interconnected by a cable.

= Inter connecto

20

CHAPTER 3. FIBONACCI NUMBER COMPUTATION 21

Because of its length, the trunks divide the units into groups of 4 mem-
bers. Now we scroll to the second group, to the 4 Accumulators, which we
saw immediately after the configuration was loaded. We can notice that
their wiring is different from that of the 2 accumulators in the first group.

3.2 Interconnection of Accumulators

= . EE D.-c
¥ ’ﬁ' A
.orronu"’m"sw‘s ‘
1 o rg.’1 ;

i z =—=Crgil 0‘:

257 E'Sa : L-_,.
ﬁ\‘.l' A‘i' n‘\'i' ﬁ\‘.l' n‘\‘i' n‘\'i' ﬁ\‘.l' aly n“\‘.l' n‘\‘i' ﬁ\'i' n“\‘.l' n‘\'i' ﬁ\'i' n“\‘i' |‘"|

-fosaﬂ‘Suf‘SQ‘Suﬂ‘Sufesw“'sw‘S u"Su"Su"Su‘Su"Sa"Sﬁ"SW‘S

2,. sz,.sz,.sz,. sz,.sz,.sz,. sz,.s 2,.82,.32,;82,.82,.32,.82,.82,.3
(O C R R
GE G Cf@,g@ clc G)@ o6 0o ee 08 08 06 06 Po 68 O

The snapshot is taken at that moment, when the first reset pulse is send.
We see 7 connectors (or rather: plugs) highlighted. These connectors are
called the Interconnectors of the Accumulator units.

An Accumulator can be configured in two ways. In this case, two Ac-
cumulators are switched together as a pair. Each partner keeps its own
digit inputs and outputs, but shares the program input and output connec-
tors. Whenever a program pulse reaches one partner, the same program is
started for both, and they will act synchronously. Because of this feature,
the ENIAC is capable to deal with 20-digit numbers. As the sign of the
combined number, the sign of the left hand Accumulator is taken and the
one of the right hand one is neglected. So when a carryover occurs at the
highest digit of the right partner, its sign won’t be toggled. The pulse is
immediately passed to the lowest decade of the left partner. More than two
accumulators cannot be interconnected.

-§|||||EJ
" - ; A0 ec
Iv‘.w Av”gv‘.g?se
'«E’ :

9 _1

ca

25
\' A\' A\' A A A\' A
il ‘ .‘ "Sa"su"su"sa"é&"é
[1

I11'6116116116116116116116
mbiebiebzebliediebiebiied
9 5 6 O

8@ @8 Co OF 06 06 0D OO

CHAPTER 3. FIBONACCI NUMBER COMPUTATION 22

This is how an Accumulator must be wired to act as a single player.
Without these plugs, the Accumulator doesn’t work (in our example this
is the case for Accumulator No. 2, which is out of service). The upper
right connector seems to be plugged to itself — it has sticked an item called
load-boz. This load-box contains resistors, and closes a few circuits at the
Accumulator, as the cable on the left side, too. The same circuits are closed
in a different way, when two Accumulators are interconnected as above.

3.3 The Constant Transmitter
0 @l “ I I B

LLR gl LR g LRl LR gl LR LR gy LR LR LR) LR M a=F i
KL KR 2

/s B Ay B\ C=s [Cs [/E=s F E=e F/Gms HGme HiJ=s K J—e K § R
= = o 3 M =F M =P

|

LR R AL L gl L LR A L LRg [l e 3 3v0s 0v e 36 300e 3 30ng 00 3

A B Bl D08 I Ene FlEm F o Hises Hm Keme k0 5 07 3165 56% 60 T ® A 40 5o 52§
|

T T T T P e e E e D E e

B Bl By 0oy DIEoy F oy F oo Hioay W ks el 4 0 0% 40 §1® 63 do® dlu® dp® £ 02

lnlofololoiololofoloiolololotolololololol
DHEE HE GEOHHE BE COBHEE)

@@-@@@@o@-@@-@oe@@@-@@-@oi

Back to our example. The last group of units contains another two (sin-
gle) Accumulators and two units to be introduced now. Correctly speaking,
these are two panels of a single unit, the Constant Transmitter. The left
hand panel has an irritating high number of switches. I suggest you don'’t
touch it this time. The only thing you have to know so far, is that an incom-
ing program pulse triggers this panel to read a constant from its right hand
neighbor. The switch according to the active program connector, in our case
points to the upper left 5 digits, that are set to 7 in our example.

Please turn the switches and change the number to your favorite one.
When the computation starts, this number will be read and taken as the
index of the Fibonacci number to be computed. But note, that fibg; =

CHAPTER 3. FIBONACCI NUMBER COMPUTATION 23

83621143489848422977 is the highest number to be displayed.! Note also,
that the computation of fib, will need 2 - n + 1 addition cycles.

3.4 Running the program

Now let’s get ready to start the program. Before pressing the go-button,
I suggest, you bring the pulse line at the start position to the left. To do
this, you turn the iteration switch to position 0, then you repeatedly press
the step button until the pulse line reaches the pole position. Because this
program is too complex to be understood at the first view, you better turn
the iteration switch to 20 and watch the program addition cycle by addition
cycle.

Now press the go-button and the step button. When the pulse line comes
to the CPP phase, the program pulse will be sent to the program tray on
channel 9. Because the three program trays are interconnected, the pulse
also reaches the second and the third group of units. To channel 9 there are
four units listening.

3.4.1 The clear correct switch

Accumulator No. 4 is triggered to receive digits at digit input connector
€. Because this Accumulator is coupled with its left neighbor, both share
this operation. But neither No. 3 nor No. 4 has any cable plugged to
digit-connector €. So what is the purpose of this command?

=
rE

= =

!This is the largest 20-digit Fibonacci number. If you take the negative sign as a
positive digit 1, also fibgs can be read computed.

CHAPTER 3. FIBONACCI NUMBER COMPUTATION 24

In the default size you hardly can see it, so have a look at the zoomed
image above. The clear correct switch, a small pointer in the upper right
corner of the operation switch, points to ¢ instead of 0. In combination with
a receiving operation it means, that the 1’P-pulse will be picked up by the
lowest circuit. This is an easy way to increment the value of an Accumulator.
So our pair of Accumulators will be set to 1 during the next addition cycle.
The same operation is triggered at Accumulator 7, too.

3.4.2 Reading a constant

= T
@O
1o

Accumulator No. 8 is triggered to receive a number through its « digit
connector. The Constant Transmitter Panel 1 is triggered to read a number
from Panel 2, and send it to its digit output connector. Because both con-
nectors are plugged to digit tray 1, this will effect that the constant n will
transferred to Accumulator No. 8.

All events of the following addition cycle are predicted now. You can
go back to the Initiating unit and press the step button. Please note, that
you probably cannot observe everything live, but you can check the results
afterwards. A good tool to view the current values of the Accumulators is the
overview window. All blinkenlights are represented as small dots over there.
You can adjust the size of the overview panel to your personal preference.

CHAPTER 3. FIBONACCI NUMBER COMPUTATION 25

3.5 Two main loops

b. &, Overview window Blinken lights 1

After the first cycle, the program initialization is finished, and two loops
are started. The first loop has a length of 4 addition cycles and includes 5
Accumulators. In this loop, the Fibonacci number is computed. The second
loop lasts 2 addition cycles and includes 2 Accumulators. This loop counts
n down to 0 and will then cause the stopping procedure. We will examine
both loops independently.

3.5.1 The Fibonacci computation loop

When the constant number was received at Accumulator No. 8, a program
pulse is send to the channels 1 and 10 of program trays 1 and 2. This triggers
the right Accumulator pair to send its number and the left Accumulator pair
to receive. When this operation is performed the first time, a 0 is transmit-
ted, so you won’t see any pulse highlighting the cables. These operations
will be executed once, because they are related to single input connectors.

CHAPTER 3. FIBONACCI NUMBER COMPUTATION 26

|
v}”.w‘

Sha

116116-116116116-116116116

2-. 82-. 32,. 32,. fiebze 32,. sz,.s

Synchronously to that, the pulse on channel 1 triggers Accumulator No.
1 to do nothing. The nothing will be repeated for two addition cycles, then
a program pulse will be sent to channel 2. Accumulator No. 1 itself listens
to this channel, and will start another no-operation for two addition cycles.
When this operation finished, a program pulse will be sent to channel 1, and
the loop starts again.

Effectively, Accumulator No. 1 plays the role of a timer. Every two
cycles alternately a pulse to channel 1 and to channel 2 is emitted. Without
interruption, this eternal loop will run forever.

The two pairs of Accumulators, which compute the Fibonacci numbers,
are controlled by this timer. If there is a pulse on channel 1, the right pair
is sending while the left one is receiving. If there is a pulse on channel 2, the
transmission is performed in the opposite direction. In mathematical terms:
having the start values a = 1,b = 0, the iterated execution of the operations
a:=a+b,b:=b+ a the Fibonacci numbers lets arise.

CHAPTER 3. FIBONACCI NUMBER COMPUTATION 27

3.5.2 The for-loop

: s y.sg':‘y.sgg‘y.s 9] s y.sg';‘y.sS;‘y.sg;‘y.sg';‘ﬂ- -c
Sl ok S cad
| | 371
—— { o] P e B e e B
v atrsin "}?;o"}-?.io'?-?.io.. A S B B e
SioeT giaeT gl SR Sia e gia

i g

The other loop also alternates between two states. Over here the role of
the timer is played by Accumulator No. 8. During the first cycle of the loop,
Accumulator No. 7 sends the negation of its digits, so -1. Accumulator No.
8 receives, and its value is decremented. At the second cycle, No. 7 does
nothing, while No. 8 is sending its number to digit tray 2. From there the
digit is passed to the program tray H.

3.5.2.1 converting digits to program pulses

The transition from the digit-sphere to the program-sphere is possible,
because all pulses occurring at the ENIAC have the same length and volt-
age. As well, program and digit trays internally are completely the same
components, but with different connectors. Conversions of digit pulses to
program pulses were a common praxis in programming the ENIAC. It was
even supported by the layout of specialized trays, as you can see on the orig-
inal photography above: The third tray from the top has a digit connector
on its left hand, and 11 program connectors (6 whith a white background,
between them another 5 with a dark backround) on its right hand.

CHAPTER 3. FIBONACCI NUMBER COMPUTATION 28

3.6 Program termination

Back to our program. Only channel 1 of tray H is read. Pulses in other
channels won’t cause anything, because no one listens. Channel 1 of a pro-
gram tray corresponds to the channel of a digit tray, which transmits the
sign. For our example this means, there will be a pulse in channel 1 of tray
H, when a negative number is transmitted by Accumulator No. 8. This will
be the case when the loop is executed the (n + 1)-th time.

Both timers, Accumulator No. 1 and No. 8, listen to the specified chan-
nel. If they receive a pulse from there, they will stop their current operation
and start a no-operation. This is how the program is terminated. Please
note, that the stopping pulse will occur at the time of the first 9P pulse. So
this pulse is asynchronous with regular program pulses, that occur at CPP
time. This asserts, that there won’t be two program pulses reaching an Ac-
cumulator at the same time. That would cause an unpredictable behavior,
in the original ENTAC as well as in the ENIAC simulation.

3.7 Reading the result

b &] Overview window

Because n is tested to be negative, the for-loop will be executed n + 1
times. For that reason, the correct Fibonacci number is the lower one of the
two numbers computed by the Accumulator pairs. The screen-shot above
shows the result for n = 64 on the overview window. The lower number is
10610209857723.

Chapter 4

The ENIAC simulation
Architecture

A complex software as the ENTAC simulation is composed of several modules
sharing the responsibility for the whole system. The architecture of this
system follows so-called design patterns. The main design concepts of the
ENTAC simulation are described from the programmers point of view.

4.1 Namespaces

The interaction between the different parts of a software is supported by
namespaces. A namespace' provides its members with a unique name, so
that they can be identified.

4.1.1 Singleton classes

Java classes are organized in their own namespace, the package structure.
This structure can be used to address objects as well, especially if the class
has only one instance. Such a class is called a singleton. A singleton usually
has a private constructor, a private static instance and a public static ac-
cess method returning this instance. The use of singleton classes can make
software self-instantiating — whenever the access method is called, it checks

'Tn general, a namespace is an abstract zone which is or could be populated by names,
or technical terms, or words. A namespace uniquely identifies a set of names so that
there is no ambiguity when objects having different origins but the same names are mixed
together. In a namespace, each name must be unique. The namespace is the context, and
in the namespace each word can uniquely represent (map to) a real-world concept.[13]

29

CHAPTER 4. THE ENIAC SIMULATION ARCHITECTURE 30

whether the static instance is set and initializes it on demand. So the typical
java code implementing the singleton pattern looks like this:

public static SingletonClass getInstance() {

if (instance == null) {
instance = new SingletonClass();
instance.init();

}

return instance;

}

In the ENTAC simulation, all singleton classes implement the interface eniac.
MainListener. This works around a problem caused by the fact that the
ENIAC simulation is an applet.? Interface MainListener defines a method
to dispose the singleton instances. All implementing classes should regis-
ter themselves at the Main class, so that they can be disposed when the
applet’s life cycle comes to its end. Typical singletons in the ENIAC simula-
tion are window components like eniac.window.EFrame and eniac.window.
LogWindow. Another singleton to be mentioned is discussed in the following
subsection.

4.1.2 Class eniac.util.Status

The Status class provides static access to a bunch of properties. To each
property a java.beans.PropertyChangeListener can be registered in order
to be informed when the property changes. All properties are initialized with
hardcoded default values (e.g. 0, null) at the first call of Status.getInstance().
For the property names, the status class provides its own namespace con-
sisting of public static final strings. By convention, these strings are just

*During the execution of a Java-program its classes are loaded into the Java Virtual
Machine. This is the same for an application as for an applet. When you exit an applica-
tion, the virtual machine terminates. When you exit an applet, the behaviour depends on
the browser. But it is quite common, that the virtual machine stays alive until you close
the browser window. Also the classes stay loaded.

This behaviour effects a problem, that I called the reload-bug: The applet is running.
You press the browser’s refresh button. That causes the browser to call your applets
stop() and destroy() methods and to terminate all threads. Concurrently the html-
Page is reloaded causing your applet to start again. But the 2nd start is performed under
different circumstances than the first one — the classes are already loaded, and the class
variables are already set, especially the singleton instances. The result is an inconsistent
mixture of old and new data that crashes the applet.

CHAPTER 4. THE ENIAC SIMULATION ARCHITECTURE 31

reference copies of strings in class eniac.io.Tags. So the typical access
(setting and getting) to a property is done by following calls:

Status.getInstance().
set (Status.MY_PROPERTY_NAME, myProperty);
PropertyObject myProperty =

(PropertyObject) Status.getInstance().
get(Status.MY_PROPERTY_NAME) ;

4.1.3 Class eniac.io.Tags

In this class all XML-tags® and attribute names are collected as static fields,
and also the property names referenced by class eniac.util.Status. The
alternative of using this class is to hardcode all strings in the XML-handlers.
But it is preferable to have them at one point and to assert a naming con-
vention in order to avoid typing mistakes.

By convention and for readability XML-tags are lowercase, whereas java
constants should be named uppercase. The constants in eniac.io.Tags
formally are not constants, their initial values are null. When the class is
loaded they are initialized by their lowercase names using the java reflection
framework:

Tags.class.getFields();
for (int i = 0; i < fields.length; ++i) {

// init field by its lowercased name
String value = fields[i].getName () .toLowerCase();
fields[i].set(null, value);

}

This static initialization method and the static strings are the only members
of class Tags, so its purpose is purely namespace providing.

4.1.4 Class java.lang.Words

The same way of initialization is used for the static strings contained in class
java.lang.words. This class collects all strings which are displayed to the
user, with an exception of error messages (hardcoded) and technical ENIAC
names (loaded from configuration files). These strings can be accessed in
public, too.

3 An exception: ENTAC model layer types are not contained. Please refer to 4.1.7

CHAPTER 4. THE ENIAC SIMULATION ARCHITECTURE 32

4.1.5 The classloader namespace

The opposite of collecting XML-tags in a java class is referencing classes
from an XML-file. So it is done in the menu.zml and the types.zml files. In
the first one, the actions to be included in the menu are listed, the second
file maps graphical GUI classes to their data model compounds. In both
cases instances are created the following way, as it is commonly known from
instantiating a JDBC driver:

String myClassName = ...;
Object o = Class.forName(myClassName) .newInstance();
MyObject myo = (MyObject) o;

The classloader not only is useful to load classes, it also provides access to
other kinds of resources located at the classpath. In the ENIAC simulation,
all resources are contained in several jar files. These jar files are passed to
the applet classloader by HTML-tags. So their content is in the classpath.
Now image data can be accessed like this:

String myImagePath = ...;

java.net.URL url;

url = getClass().getClassLoader() .getResource (myImagePath);
java.awt.Image img = javax.imageio.ImagelIO.read(url);

and an input stream for parsing XML files can be opened as well:

String xmlFileName = ...;
java.io.InputStream in;
in = getClass() .getClassLoader().getResourceAsStream(name) ;

The disadvantage is that if a resource cannot be found in the jar-file, an
HTTP-request is send to the web server, because the applet’s codebase inher-
ently is contained in the classpath. Another way of accessing those resources
would to load a jar file by an java.net.JarURLConnection and parse its en-
tries by using the java.util.jar API. This way has three inconveniences:

e When running the program as application, all resources must be con-
tained in jar files the same, as it were started as applet,

e the names of the jar files must be passed to the program,

e the usage of the java.util.jar API is more complicated than the
examples above.

CHAPTER 4. THE ENIAC SIMULATION ARCHITECTURE 33

Because I don’t expect resources to be missed in a software that is under
such complete control of the webmaster as an applet, I chose the first way
of loading external resources.

4.1.6 Parameters

The common way of parameterizing an applet is by using the HTML <param>
tag. The common way of parameterizing a Java application is by passing
arguments to the string-array, with which the main method is invoked. Be-
cause the ENTAC simulation is designed to be runnable both as applet and
as application, both ways are supported. Also there is a third way imple-
mented: A hidden properties file named “.eniac_settings” can be written
and read from the users home directory.

A parameter representation independent from the input methods is needed.
This is given by class eniac.util.Parameters. Similar to class eniac.
util.Tags described above, a parameter is represented as a public static
String member and can be accessed in the same way. Reasonable default
values are hardcoded, so the applet runs fine without passing any parame-
ter.

The reading of applet tags differs from parsing an arguments array — there
is no way to get a collection of all parameters, you have to request them by
their names. Because the parameter names are given as class members, the
java reflection framework is used to iterate on them and to eventually set
them.

java.applet.Applet myApplet = ...;
java.lang.reflect.Field[] fields;
fields = Parameters.class.getFields();
for (int i = 0; i < fields.length; ++i) {
String key = fields[i].getName();
String value = applet.getParameter (key) ;
if (value != null)

Parameters.set(fields[i], value);

}

In contrast to class eniac.util.Status, class eniac.util.Parameters only
contains properties, which won’t be changed dynamically. So no event noti-
fication mechanism is necessary. Another distinction lies in the fact that all

CHAPTER 4. THE ENIAC SIMULATION ARCHITECTURE 34

parameters are strings. So class eniac.util.StringConverter, that pro-
vides methods to parse primitives and objects from strings, is a suitable
co-worker.

4.1.7 Model layer types

The most advanced issue was to provide a namespace for the ENIAC model
layer. Similar to the ENTAC graphical layer, the objects are organized in
a tree. So any object has immediate access to its parent and its children.
For graphical objects this relation is sufficient, because their task is to paint
themselves or a subtree, triggered by the window containing them or their
model layer counterparts whom they are observing. For model layer objects
there are more problems to solve.

4.1.7.1 XML input and output

An ENIAC configuration can be read from and written to an XML file.
Different types of ENTAC components have different functionalities and dif-
ferent looks. To identify the type of the object, I introduced class eniac.
data.type.EType. Each of its instances has a unified name, that is used as
XML-tag. All instances are collected in class eniac.data.ProtoTypes and
statically initialized by parsing the “types.xml” file when the class is loaded.
Its etype is attached to each model layer object, so the name is present while
converting objects to an XML stream.

4.1.7.2 Creating graphical objects from model layer objects

In class eniac.data.type.EType, a modal layer class is mapped to a graph-
ical layer class. There are types using the same modal class but different
graphical representation, as well as types with different models and the same
graphics. Instances are created as what I described in 4.1.5.

4.1.7.3 Identifying nodes

The model layer tree contains nodes having several children of the same type.
To identify them and maintain their order, every node has an index.

An example from the Accumulator unit: A program pulse comes through
a program connector. The Accumulator can identify the connector by getting
its index, let’s say it is 2. A program has to be started, so the value of a
Operation switch has to be read. The corresponding Operation switch can

CHAPTER 4. THE ENIAC SIMULATION ARCHITECTURE 35

be identified by finding a child node of type ProtoTypes.0OPERATION_SWITCH
and index 2.

Analogous an Accumulator unit can find its corresponding blinkenlights
by requesting the parent node for a child of type ProtoTypes.BLINKEN_
LIGHTS and having the same index as the accumulator itself.

Another system to identify nodes is their ID. Every data model object
has its unique ID and is registered at the eniac.data.IDManager. This is
useful for components that are connected by a cable. When writing to XML,
the partner’s ID is serialized, too. So the cable can be restored later.

4.2 ENIAC components

As I mentioned before, the objects representing the ENIAC are organized in
an ENTAC component tree. The architecture is predominantly a two layered
architecture, assisted by optional helper classes. So in fact there are two
isomorphic trees — one for the model layer and another for the graphical
layer.

4.2.1 The model layer

The current state of an ENIAC component is represented by a model layer
object. The base class of the model layer class hierarchy is class eniac.
data.model.EData having the following properties:

e name : String — this is displayed as mouseover tooltip
e id : int — to identify a connector’s partner (see 4.1.7.3)
e index : int — to order children of the same type (see 4.1.7.3)

e type : eniac.data.type.EType — to identify the component’s type
(see 4.1.7)

e parent : eniac.data.model.EData — the component’s parent

e gridNumbers : int[4] — to locate a component in the parent’s grid-
BagLayout (this information is used by the component’s graphical
counterpart but must be stored here because it is part of the eniac.xml
file)

A common subclass is given by class eniac.data.model.sw.Switch repre-
senting a Switch component or an information display like the blinkenlights

CHAPTER 4. THE ENIAC SIMULATION ARCHITECTURE 36

related to the Accumulator’s decade counter. A switch holds two additional
properties:

e value : int — the selected value

e enabled : boolean — whether the user can change the value. Common
switches of course always can be changed, but blinkenlights cannot be
clicked when the Accumulator has no power.

A subclass of the previous one is eniac.data.model.SwitchAndFlag addi-
tionally having a boolean flag. This class is used e.g. for an Operation switch
and the corresponding clear correct switch, that are grouped together.

4.2.2 The kindergarten

An important property of a tree node is missing in class eniac.data.model.
EData — there is no field to store child references. This facility is served by
class eniac.data.model.parent.ParentData, the superclass for all nodes
having children. To store the children, the helper class eniac.data.Model-
KinderGarten is used.*

During parsing from XML, all model layer objects are collected in a tem-
porary list. When parsing is finished, from such a child list a kinderGarten
can be created, which stores the objects in an array grouped into sections by
their type and ordered by their index. This provides constant time access
to any child. Storing in an array is possible, because the number of children
won’t change. The user might add a cable, but cables are outside the ENTAC
component hierarchy.

4.2.3 The graphical layer

The base class of all graphical layer components is class eniac.data.view.
EPanel, a subclass of javax.swing.JPanel. An epanel holds a reference
to its corresponding model object, where it is also registered as an java.
util.Observer. So the epanel is notified whenever the state of the edata

“The method to access a child is getKind(EType type, int index) : EData. In fact this
was a borderline case for my naming conventions — kindergarten is a word of German origin
and means garden of children. So the getter method also could be named getChild(...),
but I decided to choose the method name according to class name, though it might be
mistaken as an English German language mix.

On the other hand, you can read get kind as pure English in the sense of a kind of.
According to this interpretation, the method’s name means: look for the child specified
by the given kind of type and the given index. I like this polysemy.

CHAPTER 4. THE ENIAC SIMULATION ARCHITECTURE 37

changed, and can adjust the view. Normally this is done by calling the
repaint() method inherited from class java.awt.Component, that marks the
area covered by this component as dirty. Dirty areas will be painted by a
separate thread, the “AWT-EventQueue”.

Because painting the components is more time-consuming than comput-
ing the new state of the model, a few changes are dropped in the view when
speeding up the simulation pulse, and e.g. the blinkenlights seem to “jump”.
This is irritating if you are watching the highlighted pulse. So when the
highlighting state changed, the painting is not delegated to another thread.
But the component’s paint method is called immediately from the simula-
tion thread that also computes the changes in the model. That causes the
flashing to stay in the correct rhythm.

Analogous to the edata, an epanel cannot have children. The parent role
is filled by class eniac.data.view.parent.ParentPanel. A kindergarten is
not needed, because the parent-child relation as inherited from class eniac.
data.view.EPanel is sufficient.

For faster zooming, the bounds of the children are cached whenever the
size of the parentPanel is changed. So when the user toggles the zoom
between several states, known bounds don’t need to be recomputed, they
are just loaded from the cache.

4.2.4 The descriptor

In painting and layout, an epanel is supported by an instance of eniac.skin.
Descriptor. A descriptor is a small data object containing the natural size of
an epanel according to a certain level of detail and various other information
such as image file names, colors, mouse sensitive areas and a grid for layout a
panels children. Descriptors are read from the skin.xml file that contains one
descriptor per eniac.data.type.EType and per level of detail. If a panel
has no descriptor for a certain level of detail, it is not painted. This rule
is useful for a low, icon based level of detail, where just units, trunks and
blinkenlights are painted. This is the default LOD for the overview window.

Because the data contained in the descriptors is not hardcoded into java
classes, the number of classes in the ENIAC component hierarchy could be
dramatically reduced.® Also the descriptor concept opens the possibility to
introduce several skins that can be chosen by the user. And finally it makes
levels of detail easy to handle. An array of descriptors (one per level of
detail) is attached to every etype.

Ssee also 5.2.4

CHAPTER 4. THE ENIAC SIMULATION ARCHITECTURE 38

4.2.5 The control layer

Roughly speaking, the state of a model layer object can be changed in two
ways. First, the user can click a component and for example can rotate a
switch. Second, a simulation event can trigger such a change.

The first case is supported by interface eniac.data.control.Controler.
A controller responses to three kinds of mouse events: When the mouse but-
ton is pressed, when it is released, and when the mouse is dragging (the mouse
is moving with a button down). The appropriate methods of interfaces java.
awt.event.MouselListener and java.awt.event.MouseMotionListener are
just passed to the controller. The use of a controller effects, that push but-
tons, rotary switches and toggle switches all can be represented by the same
graphical class, they just need different controllers.

The controller depends on the current descriptor. So components can
show different functionality in different levels of details, too — a feature
that isn’t used in the current version of the ENIAC simulation. Controller
instances are created by a temporary instance of eniac.data.control.
ControlerFactory during the time that the descriptors are parsed from
XML. Because a controller is a stateless static object just offering pieces of
code, there are just single instances of each controller class. Because the
classes are small, they are collected as private inner classes in the controller
factory. For components that cannot be changed by mouse actions, a default
controller with empty methods is registered.

The second case is not supported by a helper class. All actions are
hardcoded in the model layer class. I don’t expect any synergetic effects,
because the changes caused by the simulation thread differ from type to
type, even on the unit level.

4.3 XML files

Instead of hardcoding data in the ENIAC simulation, information is read
from XML files. So a lot of changes can be done without changing and
recompiling the source code. Also some data can be changed by loading
another XML file by a user’s command. In this section the file types are
introduced.

4.3.1 Parsing XML using the org.xml.sax API

The SAX API provides an easy-to-use, event based way of parsing XML
and is contained in the Java SDK since version 1.4. Writing a parser means

CHAPTER 4. THE ENIAC SIMULATION ARCHITECTURE 39

extending class org.xml.sax.helpers.DefaultHandler. This class contains
methods to be called when parsing starts or ends, when an element starts or
ends and when whitespace was read. Triggered by these method calls you can
create objects from the parsed data. In case of a complex DTD, this process
should be supported by an internal state machine. Good programming (or
rather: debugging) praxis is to include all code of the methods in a general
try-catch clause like this:

try {
// object creation code
} catch (Exception e) {

e.printStackTrace();
throw new SAXException(e);

}

Otherwise any exception occurs during creating your objects will be wrapped
into a org.xml.sax.SAXParseException, and you will lose the exception’s
origin. The parsing is started the following way:

MyHandler handler = ...;
javax.xml.parsers.SAXParserFactory factory;
javax.xml.parsers.SAXParser parser;

factory = SAXParserFactory.newInstance();
parser = factory.newSAXParser();
saxParser.parse(in, handler);

A disadvantage of this API lies in the fact, that for each DTD you have
to write your individual handler. In another XML framework, the org.
w3c.dom API, so-called dom trees containing the parsed data are created
automatically. But in this case you have to deal with a tree, whose structure
maybe doesn’t fit your needs and probably contains some overhead. Or you
have to convert the tree to your own objects, what means the same effort as
writing a sax DefaultHandler.

An advantage of the SAX API is, that you can write several handlers for
the same file DTD, even lightweight ones that don’t convert all of the data.
This circumstance is used by the proxy concept, which is introduced in the
following subsection.

CHAPTER 4. THE ENIAC SIMULATION ARCHITECTURE 40

4.3.2 The proxy concept

When the user is given the choice of loading several files, he needs infor-
mation about the file contents, a kind of meta-information. In the ENIAC
simulation, this information is stored on top of the xml file within an element
called “proxy”. This tag is read by an instance of eniac.io.ProxyHandler
that creates an instance of eniac.io.Proxy, but will ignore all other data.
The names of the elements contained in the “proxy” element are not fixed.
They are put into a java.util.Hashtable and mapped to the whitespace
they contain.

The data included to the proxy is the data that will be displayed to the
user when selecting the file from a dialog. But also some data snippets that
does not fit into the XML file structure can be included. As an example I
list the proxy-element of the skin.xml file:

<proxy>
<name>default</name>
<description>This is the default skin</description>
<author>Forename Surname</author>
<email>mail@institution.org</email>
<preview>skin/preview_0.gif</preview>
<number_of_descriptors>89</number_of_descriptors>
<number_of_lods>2</number_of_lods>
<zoom_steps>80,100, ... ,2282,2853</zoom_steps>

</proxy>

When the data finally is loaded, the contents of the proxy tag will be ignored.
The proxy concept is used by the eniac.xml, skin.xml and lang.xml files.

There is also a class eniac.io.ProxyScanner, which indexes a given
filename to a maximum range, and tries to load and parse the indexed files
from the classpath (see 4.1.5). E.g. when the user wants to change the
language, the proxy scanner tries to parse the fileslang 0.xml .. lang 5.xml,
because as maximum index 5 is set as the value of eniac.util.Parameter.
MAX_LANGUAGE_INDEX. It is the webmaster’s responsibility to set the index
to the correct number.

4.3.3 XML file types

In this subsection the five XML file types used by the ENIAC simulation are
described. Of the first three file types, many instances can exist, because
they can be loaded from inside the ENTAC simulation by a menu control.

CHAPTER 4. THE ENIAC SIMULATION ARCHITECTURE 41

4.3.3.1 eniac.xml

As described in subsection 4.1.7, all data of the model layer tree is parsed
from this file. Except a proxy, only elements representing ENIAC component
types are contained. Here is an excerpt of the XML representation of an
initiating unit (leaving out the name attributes):

<initiating_unit id="172" grid="0,1,1,3" index="0">
<clear_button id="173" grid="3,2,4,3" index="0"
value="normal"/>
<go_button id="174" grid="2,2,3,3" index="0O"
value="normal"/>
<heaters id="175" grid="1,2,2,3" index="0" value="on"/>
<initiating_image id="176" grid="0,0,4,1" index="0"/>
<initiating_symbol id="177" grid="0,2,1,3" index="0"/>
<program_connector id="178" grid="2,3,3,4"
index="0" io="out" partner="188"/>
</initiating_unit>

4.3.3.2 skin.xml

The descriptors parsed from this file are used by the graphical layer to draw
ENIAC components on the screen (refer to subsection 4.2.3). The data
stored in the descriptors is created by subclasses of abstract class eniac.
skin.Creator. Instances of these classes itself are created by eniac.skin.
CreatorFactory, which also contains them as private classes. A similar
concept is used to create controller instances (see 4.2.3). The following XML
snippet represents the go button at the medium level of detail:

<descriptor type='"go_button" width="30" height="30"
fill="none">

<single class="Controller" name="controller">
PushButton

</single>

<array class="Image" name="back_image_array">

<entry>go_button.gif</entry>

<entry>go_button_pushed.gif</entry>

</array>

</descriptor>

CHAPTER 4. THE ENIAC SIMULATION ARCHITECTURE 42

4.3.3.3 lang.xml

Language data commonly is represented in resource bundles, in Java rep-
resented by class java.util.ResourceBundle. The Java framework also
provides methods to load resource bundle contents from a properties file.
Nevertheless I chose the XML representation, in order to maintain a unified
data concept and to be able to use the proxy concept (cf. 4.3.2). Also the
static access to language data in class eniac.lang.Words (cf. 4.1.4) does
not work well with the Java resource bundle, because it stores language data
in a hash table. Currently only English and German language files exist for
the ENTAC simulation. An example of the English language file:

<entry key="frame_title">Eniac Applet</entry>
<entry key="overview_window_title">Overview window</entry>

Also multi-line whitespace (e.g. for the FAQ) is supported.

4.3.3.4 menu.xml

The menu.xml file is not an indexed xml file, because it is loaded only once
in the applet’s life cycle. For more details about the menu, please refer to
the following section. The following code represents the first two buttons in
the ENTAC simulation toolbar:

<group key="file">

<action icon="open_configuration.gif"
class="eniac.menu.action.0penConfiguration"/>

<action icon="save_configuration.gif"
class="eniac.menu.action.SaveConfiguration"/>

</group>

4.3.3.5 types.xml

Also the types.xml file is loaded once. This is the code to create a go-
button. The codes-section defines how the possible values are encoded at
the eniac.xml file:

<type name="go_button">
<model>eniac.data.model.sw.Switch</model>
<view>eniac.data.view.sw.SwitchPanel</view>
<codes name="value">
<code>normal</code>

CHAPTER 4. THE ENIAC SIMULATION ARCHITECTURE 43

<code>pushed</code>
</codes>
</type>

4.4 Actions

What is an action? An action is an operation triggered by the user that
changes the state of an object. Actions usually can be started in one or
several of the following ways:

e by activating a user interface component by a mouse action
e by selecting an item from a menu

e by hitting a shortcut on the keyboard.

Because one action can be triggered from several sources, it is useful to sep-
arate the action performing (this is a more or less parameterized automaton
routine) from the action representation. This is known as the command pat-
tern introduced by Gamma et aliter [11] and is supported by the interface
javax.swing.Action of the Java framework.

4.4.1 EAction and ToggleAction

In the ENIAC simulation, actions are represented as subclasses of the ab-
stract class eniac.menu.action.EAction, itself subclassing javax.swing.
AbstractAction. Class EAction contains methods to create a javax.swing.
JButton and a javax.swing.JMenuItem as the default components to inte-
grate this action into the GUIL.

An eAction® represents a single state action that can be enabled or dis-
abled. There are three abstract methods to be implemented by subclasses:
one method to perform the action (inherited from interface javax.swing.
Action) and two methods returning the action’s name and short descrip-
tion. The name will be written in the menu, the short description dis-
played as tooltip. An icon representing the action as jButton is expected
to be set during initialization process. An eAction registers itself as lis-
tener. So it is informed, when the language changed, and can reload its
name and short description. As an example EAction, I'd like to mention

5Class names are capitalized according to the javadoc guidelines. If the class itself is
focused, the first letter is capitalized. If an instance of that class is meant, the first letter
is in lower case.

CHAPTER 4. THE ENIAC SIMULATION ARCHITECTURE 44

class eniac.menu.action.About, which opens a small window displaying
information about the program.

Abstract class eniac.menu.action.ToggleAction represents a two-state
action controlling a boolean value, e.g. whether the pulse will be highlighted
or not. Over here a default implementation of the action performing method
is given — a boolean value at the status-singleton, identified by a key, is
toggled. The key should be one of the static strings in class eniac.util.
Status, and should be passed to the ToggleAction constructor. There are
integrative methods that return a javax.swing.JToggleButton respectively
a javax.swing.JCheckBoxMenuItem.

4.4.2 MenuManager and MenuHandler

All actions are initialized by the menu manager which is implemented by
class eniac.menu.MenuManager. This is done by the help of class eniac.
menu.MenuHandler, which parses class names and icon names from an XML
file. Actions are grouped as well in order to create named menu items as
File or Zoom. So you have full control from outside the Java source code
of which actions should appear in which order. The menu manager also
provides methods to create a javax.swing.MenuBar containing all actions
as menu items and a java.swing.JToolBar containing them as buttons. See
7?7 about how to add a new action to the ENIAC simulation.

Chapter 5

The software development
process

5.1 General aspects

5.1.1 Inner and outer software quality

Software quality strongly depends on a suitable architecture. Why that?
Two programs might have exactly the same functionality but rely on a com-
pletely different architecture. From the user’s point of view both programs
are the same, because they do the same. Functionality belongs to the outer
quality of software. Other aspects of outer quality are performance, scala-
bility and stability.

In contrast, the inner quality of software is invisible to the user. Aspects
of inner quality are the readability of source-code and functional extensibility.
In the life cycle of a software product, about 40% of overall effort is done for
upkeep and maintenance. To reduce costs, the software should be designed
in a way that you can easily do small changes or functional enhancements.

5.1.2 Top-down versus Bottom-up

In a professional software process, there are usually more than one person
involved. So several roles are necessary: The Software Architect designs soft-
ware by using design tools, the Software Developer implements the software,
the Software Engineer converts it to a product and the Project Manager
controls this process. Last but not least, you have the customer who ordered
the software

If you are writing software as a single person, you — roughly saying —

45

CHAPTER 5. THE SOFTWARE DEVELOPMENT PROCESS 46

have to fill these roles by yourself. But in doing this you can avoid a lot of
communicational overhead. For the cooperation between a Software Archi-
tect and a Software Developer UML is a main tool. The architects fix the
design into UML-diagrams that the developers have to implement. This is a
Top-down process of designing software. As a single person you don’t need
a UML-diagram in the design state, because you don’t need to explain your
design to anybody but yourself. It is sufficient to have the diagram in your
head (if your head is clear enough to keep it), and in your head it is easier
to modify. On the other hand, you don’t need the diagram at all, when you
design your software bottom-up.

5.1.3 Maintaining a Prototype

Bottom-up software design means maintaining a prototype. A prototype is
a piece of software having one or several features that the final product is
planned to have. You step into the development process by establishing a
prototype, then you include one feature after another until the product is
ready. This has the advantage, that you can test a new feature immediately
after it is included and can keep on the interaction of the existing features.
As well you have something to show to your customer.!

If you are architect and developer in one person, you can start coding
before having the whole plan. You are writing a swinging Applet? So there
will be a starter class extending javax.swing.JApplet. Should it be possible
to start the program as an application, too? So you need a main-method.
Because you want your program to be scalable, there should be a way to
pass parameters. In fact there are two ways — the applet way by param-tags,
and the application way by the arguments string array. Within the program
there should be a global access point to the parameters and its values.

In fact these were the first decisions I did in designing the ENTAC-
simulation. And these decisions were made during coding, or rather: by
coding. As I saw there are two ways to pass parameters, I decided to ab-
stract keeping the parameters from the starter class. Generally speaking,
there is a lot of code that can be written independently from the whole plan
and by writing this code you can identify the next problem that needs to be
solved.

Of course this sometimes leads you to a dead end, but dead ends are part
of the concept. In this case you have to change your concept and refit it.

1Refactoring, Continuous Integration and Test Driven Development are core practices
of Extreme Programming. Please refer to [10]. Pair Programming, another core practice,
hardly can be performed by a single programmer.

CHAPTER 5. THE SOFTWARE DEVELOPMENT PROCESS 47

These development phases are called refactoring phase. So your concept of
the whole software involves together with your source code.?

5.1.4 The project manager and the customer

Software projects are always late. Moreover, they seem to be inherently late.
This relies on the many uncertainties in the software developing process. So
the project manager’s job is to keep these uncertainties as small as possible.
One way to do this, is to divide the development process into several steps
and bring them into a time line. Then you can estimate the amount of time
for every step and make a timetable.

But as I said before, some steps lie in the far future and the circumstances
under which they will be done are unknown. So the estimation is a kind of
blue. Also some steps might be forgotten or it turns out, that another way
to go is more suitable for the project than initially planned. And in fact,
planning takes time and can be overhead as well.

From the customer’s point of view the product and its time of delivery
counts most. He supposedly had a purpose to order the software and is happy
if it fits his needs. If the hours the development team spent developing don’t
count for the costs, the customer don’t bother about them. But similar to
the project manager he has an interest to track the progress of the project
in order to estimate the date of delivery.

As mentioned above, it is hard to plan a software project in all steps
at the beginning, especially when you are developing prototype oriented.

*You can describe the process “writing a program” in the words of “playing a chess
game”™ The opening can be played easily, because these first moves are played a hundred
times. In the mid-game you are facing problems and have to think. You need to find a
plan that fits to the individual situation of this game. Sometimes your approach is not
suitable and you have to change it. The endgame is a matter of technique.

The two ways of thinking during a chess game are called strategic and tactical. Strategic
thinking is a long term approach to reach a good position and is top-down. Tactical
thinking means computing the next moves in order to find a way to a good position and
is bottom-up. Finding a move needs exact computation and can excellently performed by
a computer, while analyzing a position is fuzzy and still is better done by humans than
by computers, unless you use neural networks. But this is another diploma thesis.

What I want to point out in this excursion is the fact, that talking about programming is
metaphorical. Except 0 and 1, anything in a program is virtual and only can be understood
in terms borrowed from another area of reality. If you are talking about a remote procedure
call you won’t have two yodeling Bavarians in mind, but the words indeed are borrowed
from the human sphere and mapped to the vast field of bits and bytes. So using concepts
from different sources is like lighting the topic from several perspectives and can bring new
aspects to light. The important role that metaphors play in reasoning have been pointed
out by Lakoff and Johnson [12] in an exemplary manner.

CHAPTER 5. THE SOFTWARE DEVELOPMENT PROCESS 48

On the other hand, the customer often has no clear idea, what kind of
software he needs. It is more like that he realizes a gap, that needs to be
filled, like a job routine, that he suspects to be more efficient with software
support. So it is in the customer’s interest to see unfinished products, maybe
lacking functionality at all, because they help him to find out what he wants.
Frequent interaction with the customer is important for the success of a
software project, because the demands can be redefined.

In a one man developing team, the developer is also the product manager.
Because developing takes more time than controlling, he identifies himself
more likely with the developer’s role. This tempts him to neglect his respon-
sibilities as project manager, because with fewer control, the developer feels
more free, and coding becomes rather playing than working. Techniques
have to be found to maintain the project manager’s firm role.

If you are developing a small tool that manages your photo collection
on your hard-disk, you are your own customer as well. But in the case of
a diploma thesis, you have to deal with your professor and meet him from
time to time. In the following section I will elaborate the initial time-line
for my diploma thesis, how I tracked its progress and shot troubles, and in
which way I had to modify the time-line.

5.2 Developing the ENTAC simulation

The basic setup for starting the development process was simple. I decided
to use Eclipse? as development environment and to support building and
backing up by a few shell scripts. I took JDK 1.4 as Java version, because
I wanted to use swing and take XML for data io.* I had written several

3The many features of Eclipse are more worth than to be handled in a footnote. But
because I didn’t use them for the ENIAC simulation, I don’t report them. Here is what
the Eclipse consortium writes about its product:

Eclipse is an open platform for tool integration built by an open com-
munity of tool providers. Operating under a open source paradigm, with
a common public license that provides royalty free source code and world
wide redistribution rights, the eclipse platform provides tool developers with
ultimate flexibility and control over their software technology.[9]

4If you are choosing the suitable JDK, the main choice is between JDK 1.1 or JDK 1.2

an newer. For web browsers there are three families of virtual machines:

e Suns JVM, which was developed continously and is now obtainable in Version 1.5
beta

e The Microsoft VM whose development was stopped in 1999, but which has been

CHAPTER 5. THE SOFTWARE DEVELOPMENT PROCESS 49

(smaller) Java applets before, so the general architecture was clear to me. I
planned a 2-layered GUI architecture and a discrete event simulation embed-
ded into a singleton-based framework. Roughly my time-line for the ENTAC
simulation was like this:
5.2.1 A time-line for the ENTAC simulation

1. Establish a suitable developing environment

2. Write a basic framework in order to establish a prototype

3. Program an accumulator and a cycling unit in order to perform the
Two accumulators test

Define an XML representation for the units

Write the data layer

(a
(b
(c
(d

Write the graphical layer by using provisional graphics

Write the discrete event simulation

~— ' ~—

4. Program the other units one by one

5. Final tasks

(a) Exchange the provisional graphics by professional ones
(b) Write multi language support
)
)

(c

(d) Write javadoc-style comments

Do extensive testing

6. Write this documentation

shipped together with the Microsoft Windows operating system until a few years
before

e The Symantec VM which was common for the Netscape Navigator 4.x and might
be neglected now

The last two virtual machines only support Java 1.1. So if you want to avoid that the
user has to install anything before starting your applet, you should choose Java 1.1. But
if you rely on swing (as the ENIAC simulation does) you have to use at least JDK 1.2
(which is also known as Java 2, because of its many new features compared to JDK
1.1). In this case the right choice is a version, that has been introduced at least a year
before. Within one year almost all university PC pools, company intranets, for which a
professional administrator has to care, should be updated to the current version.

CHAPTER 5. THE SOFTWARE DEVELOPMENT PROCESS 50

5.2.2 The to do list

For further details I established a To Do list.> It was divided into the fol-
lowing sections:

e Bugs — bugs that need to be fixed

e Features — functional enhancement of the program

— New Features — Features that need to be programmed in order to
step forward in the time-line

— Nice features — Features that would be nice to include, but that
are not prerequisites for other ones

— Final features — Features that should be done after finishing the
above ones (e.g.: write DTDs for the several kinds of XML files)

— Future features — Features that go beyond the time-line but would
be great for future releases (e.g.: a 3D version of the ENIAC
simulation)

— Maybe features — Features for which it is undecided whether they
are welcome (e.g.: Fit the ENIAC simulation window to screen
size at startup)

e Refactoring — code that became old and should be rewritten.®
e Documentation — documents that support the developing process

e Organizational tasks — contacting the real world (e.g.: arrange an ap-
pointment with the professor)

SWhat is the correct spelling of this term? Google counts

e “to do list” — 1,420,000 hits
e “todo list” — 601,000 hits

o “todolist” — 41,400 hits

e “to dolist” — 604 hits

Sthis differs from the dead ends as mentioned above. Refactoring tasks listed here
will increase the design quality, but they are not necessarily to be performed. You won’t
include an “escape from dead end”™-task to the list, because escaping from a dead end
cannot be scheduled to the future.

CHAPTER 5. THE SOFTWARE DEVELOPMENT PROCESS 51

5.2.3 The diary

Another document I maintained during developing the ENIAC simulation
was a diary. Every day after I finished working for the project I wrote a
short note describing what I have done. I also counted the current number
of lines of code and the time I used for my work.” Tracking the working hours
does not mean tracking the progress of the project. But it is a kind of self-
control and indicator of my motivation to work at the ENIAC simulation.
From the data collected in the diary, facts about the development process
can be extracted as I will do in the following subsection.

I didn’t count the lines by hand but wrote a shell script to do so. After I spent about
an hour looking for a suitable stopwatch I decided that it was faster to code it myself.
The tool shows up as a digital clock with a start/stop button attached and is visible in
the task-bar as hh:mm:ss.

Later I thought about combining the stopwatch with the to do list in order to provide
a GUI for the list and to track the time I spend for every specific task. This would
strengthen my project manager role. But as a good project manager I decided that this
was counterproductive because a lot of time that would be spent for this subproject.

CHAPTER 5. THE SOFTWARE DEVELOPMENT PROCESS 52

5.2.4 The factual time-line for the ENTAC simulation

Aug 7, 2003 | Downloading Eclipse 3.0 M2 and start of project

Sep 19, 2003 | 1st version released. It can read units from xml and display
them as dummies

Nov 29, 2003 | XML output finished

Jan 10, 2004 | Downgrading to Eclipse 2.1.2

Jan 14, 2004 | 2nd version released. It displays a dummy cycling unit and an
accumulator with switches, connectors and blinkenlights but
without functionality

Feb 5, 2004 | Introducing a skin concept. GUI and image data are decoupled
so that the user can choose his favorite surface. Units can be
displayed in several levels of detail.

Mar 1, 2004 | 3rd version released. Trunks and Trays are now working.

Mar 13, 2004 | Descriptor and DataType concept introduced. Refactoring of
the GUI is finished, which lightens the code by about 30 classes
and 2500 lines of code.

Mar 17, 2004 | 3rd version released. User can set cables.

Mar 25, 2004 | Menu is read from XML

Mar 31, 2004 | Cycling unit is finished

Apr 10, 2004 | Discrete event simulation and Initiating unit are finished

Apr 21, 2004 | Introducing internationalization.

May 5, 2004 | 4th version released. Initiating unit, Cycling unit and Accumu-
lator unit are complete. Pulse interaction can be highlighted.

May 30,2004 | 5th version released, the final version of my diploma thesis. The

Constant Transmitter unit is implemented, two Accumulators
can be switched together, and the Fibonacci number example
was programmed.

Chapter 6

Summary and Outlook

The ENTAC simulation consists out of 116 Java classes containing 14929
lines of code, 10 XML files with 10248 lines of code and 180 GIF images.

In 2003, Peter Hansen programmed a simulation of the ENIAC as his
Bachelor thesis.[8] This is the first known simulation of the ENTAC. He used a
different approach from mine and implemented the GUI without customized
graphics by using the Java 1.1 AWT components. So with fewer effort, about
the same number of units as in the ENIAC simulation could be implemented.
In contrast to the pulse-leveled ENIAC simulation, Hansen’s simulator runs
at the addition cycle level. So his simulator is even faster than the original
ENTAC.

In one section of his work, similar to this one, Hansen reasons about what
kind of extensions to his software could be made. Some of the features listed
there are provided by the ENIAC simulation now:

e The low level hardware properties of the ENIAC are represented in the
ENTAC simulation.

e Two Accumulators can be interconnected in order to compute 20-digit
numbers.

e The Initiating unit provides step-by-step execution.
e The Accumulator neon bulbs are “dancing” during a computation.

Some more features not on this list are implemented by the ENTAC simula-
tion:

e Different ENIAC hardware configurations can be loaded from an XML
file.

53

CHAPTER 6. SUMMARY AND OUTLOOK o4
e An enhanced graphical user interface is provided aiming the look of
the original ENIAC.

e Several skins for the graphical representation can be designed and
changed dynamically

e (Cables and connectors can be highlighted when a pulse goes through
them.

e The speed of the ENTAC can be controlled continuously.
But there are tasks open for the future as well:

e Implement the outstanding units of the ENTAC.
e Implement the IBM card reader and a push-card editor.

e Design more complex programming examples like an algorithm to solve
the 8-Queen-problem.

e Extend the logging system in order to have an efficient debugging tool.

e Extend the current skin by one more level of detail having about 150%
of the size of the currently biggest one.

e Collect photos of the original ENTAC or shoot new ones of the surviving
parts in order to create a photo-realistic skin.

e Enable to open several views of the ENIAC, e.g. as split screen.

e Write a “remote control” for the initiating unit — a small dialog window
like the overview window containing a second set of the step button,
the iteration switch and the frequency slider.

e Write a 3D version of the graphic component layer.
e write a C-Compiler that can translate C-Code to eniac.xml files.

e Design fantasy ENIAC components like a Tic Tac Toe unit.

Bibliography

[1]

8]

[9]

J. P. Eckert Jr., J. W. Mauchly, H. H. Goldstine, J. G. Brainerd: De-
scription of the ENIAC and Comments on Electronic Digital Computing
Machines, Moore School of Electrical Engineering, University of Penn-
sylvania, 1945.

H. H. Goldstine and A. Goldstine (1946): The Electronic Numerical In-
tegrator and Computer (ENIAC). In B. Randell (Eds.): The Origins of
Digital Computers, Springer-Verlag (1982).

J. Van der Spiegel, J. F. Tau, T. F. Ala’ilima, and L. P. Ang (2000). The
ENIAC: History, Operation and Reconstruction in VLSI. In R. Rojas
(Eds.), The First Computers; History and Architectures, MIT Press.

J. Van der Spiegel, ENIAC-on-a-Chip. http://www.ee.upenn.edu/
~jan/eniacproj.html

D. Winegrad and A. Akere: A Short History of the Second American
Revolution, In: ENIAC’s 50th Anniversary: The Birth of the Information
Age, The University of Pennsylvania Almanac N. 42, Jan. 1996. http:
//www.upenn.edu/almanac/v42/n18/eniac.html

K. A. Kleiman: The ENTAC programmers, 1997, http://www.witi.com/
center/witimuseum/halloffame/1997/eniac.php

Konrad Zuse Internet Archive http://www.zib.de/zuse/
EnglishVersion/

P. Hansen: A Java Simulation of the ENIAC, bachelor thesis at Univer-
sity of Osnabr\"uck, 2003. http://home.arcor.de/-ph/eniac/

Eclipse Consortium, http://www.eclipse.org/org/

[10] R. Jeffries: What is Extreme Programming? In XP Magazine,

11/08/2001, http://www.xprogramming.com/xpmag/whatisxp.htm

55

BIBLIOGRAPHY 56
[11] E. Gamma, R. Helm, R. Johnson and J. Vlissides: Design Patterns,
Addison Wesley 1995

[12] G. Lakoff and M. Johnson: Metaphors we live by, Chicago and London
1980

[13] Wikipedia — The Free Encyklopedia, http://en.wikipedia.org/wiki/
Main_Page

[14] The Jargon File — article about blinkenlights http://www.jargon.net/
jargonfile/b/blinkenlights.html

[15] http://www.fitg.de/images/literaturhaus/eniac. jpg

[16] http://edutech.xmu.edu.cn/hongen/pc/newer/rumen/work/img/
eniac.jpg

